Re:pete, help!

#4813
Pete Giwojna
Guest

Dear Lisa & Andrew:

Okay, here is some additional information that you may find helpful in resolving this problem. I would suggest taking the following steps as soon as possible.

(1) Perform a needle as voracious to extract any remaining gas that may be trapped in your male’s pouch, as well as from the "little pouch" at the base of his tail, which should provide the stallion with some of the relief from the positive buoyancy and allow it to feed normally again.

(2) Obtain Diamox (the tablet form of acetazolamide) from your family physician or veterinarian, if possible, or order it online, if necessary. You need to have the Diamox in case this problem recurs, as tends to happen with GBS. If the affected stallion is eating normally when you obtain the medication, administering the Diamox orally is the easiest and least stressful treatment option for you.

(3) Reduce the water temperature in your seahorse tank to 68°F-72°F, if possible, which will help prevent future problems with gas bubble syndrome, as explained below.

(4) Lower the specific gravity in your seahorse tank to 1.020 or below, which will increase the amount of dissolved gases the aquarium water can hold, thereby minimizing problems with GBS due to gas supersaturation.

(5) Combine a series of water changes with the general aquarium cleaning to maintain optimum water quality, if necessary.

(6) Implement other measures for preventing gas bubble syndrome, as explained at the end of this post.

In most cases, the surest way to improve your water quality and adjust the water chemistry is to combine a 25%-50% water change with a thorough aquarium clean up, Lisa and Andrew, so let’s start with that. Siphon around the base of your rockwork and decorations, vacuum the top 1/2 inch of the sand or gravel, rinse or replace your prefilter, and administer a general system cleaning. The idea is to remove any accumulated excess organic material in the sand/gravel bed, top of the filter, or tank that could degrade your water quality, serve as a breeding ground for bacteria or a reservoir for disease, or otherwise be stressing your seahorses. [Note: when cleaning the filter and vacuuming the substrate, your goal is to remove excess organic wastes WITHOUT disturbing the balance of the nitrifying bacteria. Do not dismantle the entire filter, overhaul your entire filter system in one fell swoop, or clean your primary filtration system too zealously or you may impair your biological filtration.]

At first glance your aquarium parameters may look great, but there are some water quality issues that are difficult to detect with standard tests, such as a decrease in dissolved 02, transitory ammonia/nitrite spikes following a heavy feeding, pH drift, or the gradual accumulation of detritus. A water change and cleanup is a simple preventative measure that can help defuse those kinds of hidden factors before they become a problem and stress out your seahorses. These simple measures may restore your water quality and correct the source of the stress before your seahorse becomes seriously ill and requires treatment.

Next, let’s concentrate on lowering the water temperature in your seahorse tank somewhat, Lisa. in my experience, the optimal temperature range for Mustangs and Sunbursts (Hippocampus erectus) is 72°F-75°F. If your water temperature consistently runs much warmer than that, there are a couple of things you can do to stabilize it at a lower level.

For example, some hobbyists keep their fish room air-conditioned and adjust the air conditioning to keep the air temperature in the room at about 75°F or a bit below. The water temperature then tends to stabilize at around that temperature range as well. Mustangs and Sunbursts will be perfectly comfortable at a water temperature of 68°F, if you can possibly reduce it that much. If not, just lowering the water temperature a few degrees can make a big difference.

Or you can reduce the water temperature via evaporative cooling instead. One simple way to drop the water temp in your aquarium is to position a small fan so it blows across the surface of the water continually (Giwojna, Oct. 2003). This will lower the water temperature several degrees through the phenomenon of evaporative cooling (just be sure to top off the tank regularly to replace the water lost to evaporation). Leaving the cover/hood and light off on your seahorse tank in conjunction with evaporative cooling can make a surprising difference. (A hood or cover tends to trap heat and hold it in the tank, so removing the voter cover from the aquarium can make a surprising difference in the water temperature, and is safe to do with seahorses since they do not jump at all.)

While reducing the water temperature via evaporative cooling, I should also caution you to observe all the usual precautions to prevent shocks and electrical accident when you are using an electric fan or any other electrical equipment on your aquarium.

One such precaution is to install an inexpensive titanium grounding probe in your aquariums. That will protect your seahorses and other wet pets from stray voltage and should also safeguard them electrocution in the event of a catastrophic heater failure or similar accident..

But the best way to protect you and your loved ones from electrical accidents around the fish room is to make sure all the outlets are equipped with Ground Fault Circuit Interrupters. And it’s a good idea to make sure all your electrical equipment is plugged into a surge protector as well to further protect your expensive pumps, filters, heaters, etc. from damage. Some good surge protectors, such as the Shock Busters, come with a GFCI built right into them so you can kill two birds with one stone. So when you set up your cooling fan(s) on the aquarium, be sure they’re plugged into a grounded outlet with a GFCI or a surge protector with GFCI protection.

Next, let’s go over how to reduce the specific gravity in your seahorse tank safely. When there has been a problem with GBS in an aquarium, I recommend maintaining a specific gravity no higher than 1.020. If there are no sensitive invertebrates in the aquarium, such as live corals or starfish, lowering the specific gravity to between 1.015-1.017 will be even more helpful.

Gradually lowering the salinity or specific gravity is done as if performing a normal water change, except that the replacement water is simply treated tap or RO water without the salt (Don Carner, pers. com.). (If the replacement water is RO/DI or other softened source, then a buffering agent should be employed to prevent pH and alkalinity drops; Thiel, 2003.) Make sure the freshwater you add is thoroughly mixed with the remaining saltwater in the tank as you proceed. This will assure that your salinity/specific gravity readings are accurate. Monitor the lowering closely so as to not reduce it too fast. Achieving the desired specific gravity (1.015-1.017) over a period of several hours is fine (Don Carner, pers. com.). The bacteria colony in the biofilter will survive, the fish will survive, but the parasites will not (Don Carner, pers. com.).

CAUTION! When lowering the salinity or specific gravity in your seahorse tank, be very careful as you add the freshwater when you approach the target salinity. You do NOT want to overshoot the mark and drop the salinity too far! Seahorses tolerate low salinity very well up to a certain point, but they cannot withstand salinities below 13.3 ppt (specific gravity = 1.010) indefinitely. Salinities below 1.010 may be fatal to seahorses in a matter of days, if not hours. Just take care when the specific gravity in your seahorse tank is nearing the desired level of 1.015-1.017 and you should be in great shape. There is a big enough difference between a specific gravity of 1.015-1.017 and the dangerous level of 1.010 to provide a large margin for error and make this process very safe.

Once you have reduced the specific gravity in your seahorse tank to 1.015-1.020, you can maintain it at that level indefinitely thereafter. When an aquarium has had an outbreak of gas bubble syndrome, reducing the specific gravity to 1.015-1.017 has many benefits. It makes it easier for the seahorses to osmoregulate, increases the amount of dissolved oxygen the water can hold it makes it easier for the seahorses to breathe, helps eliminate protozoan parasites and ectoparasites in general, and helps to minimize problems with gas supersaturation and therefore GBS.

But if you should want to return the specific gravity in your seahorse tank to normal at some point for any reason, be sure to do so very gradually. In that case, when you are ready to return the system to normal salinity, simply reverse the process, remove some of the low salinity water in the aquarium and replace it with high salinity water. Take your time and raise the salinity slowly and gradually. Fish can become dehydrated if the salinity is increased too rapidly, so be methodical and raise the salinity over a period of several days. Don’t hesitate to take a full week or two to return the specific gravity to normal levels again in small increments. The salinity can be reduced relatively rapidly very safely, but it must be raised again very gradually in order to avoid the risk of dehydration.

Finally, let’s discuss gas bubble syndrome in more detail and go over some of the other measures the home hobbyist can take to prevent problems with GBS in the future.

As we were discussing earlier, gas bubble syndrome (GBS) is a mysterious, widely misunderstood affliction that can take on many different incarnations. As you know, gas bubble syndrome is believed to be caused by gas emboli forming within the tissue of heavily vascularized portions of the seahorse’s anatomy — the placenta-like brood pouch of males, the eye, the muscular prehensile tail — and it can take several different forms depending on where the bubbles or emboli occur. When it occurs in the brood pouch of the male, chronic pouch emphysema or bloated pouch results, leading to positive buoyancy, which is by far the most common form of GBS. When it occurs in the capillary network behind the eye (choroid rete), Exopthalmus or Popeye results, and the eye(s) can become enormously swollen. When it affects the capillary network of the gas bladder (the rete mirabile), hyperinflation of the swimbladder occurs, resulting in positive buoyancy. When it affects the tail or snout, external gas bubbles (i.e., subcutaneous emphysema) form just beneath the skin and look like raised blisters. When intravascular emboli occur deep within the tissue and occlude blood flow, generalized edema results in the affected area. Or extravascular emboli may cause gas to build up within the coelom, often resulting in positive buoyancy and swelling or bloating of the abdominal cavity (internal GBS).

Different parts of the body can thus be affected depending on how the
initial gas emboli or micronuclei form, grow and spread. During an
episode of GBS, bubbles may initially form in the blood
(intravascular) or outside the blood (extravascular). Either way,
once formed, a number of different critical insults are possible.
Intravascular bubbles may stop in closed circulatory vessels and
induce ischemia, blood sludging, edema, chemistry degradations, or
mechanical nerve deformation. Circulating gas emboli may occlude the
arterial flow or leave the circulation to lodge in tissue sites as
extravasular bubbles. Extravascular bubbles may remain locally in
tissue sites, assimilating gas by diffusion from adjacent
supersaturated tissue and growing until a nerve ending is deformed or
circulation in nearby capillaries and vessels is restricted. Or,
extravascular bubbles might enter the arterial or venous flows, at
which point they become intravascular bubbles. Extravascular bubbles
can thus become intravascular bubbles, and vice versa, via diffusion
and perfusion. This is important because it means that under certain
conditions extravascular seed bubbles or micronuclei can enter the
bloodstream and migrate from their birth site to other critical areas
as intravascular bubbles. If untreated, the gas bubbles worsen and
the condition is fatal.

The mechanisms by which the gas emboli can spread and grow, and the type of insults that can result are therefore fairly well known, but the etiology of GBS is otherwise still poorly understood, and there are many theories as to what causes the gas embolisms to form in the first place. Nitrogen gas supersaturation of the water, the unique physiology of the male’s brood pouch, malfunctions of the pseudobranch or the gas gland of the swim bladder, stress-related changes in blood chemistry that affect the oxygen-carrying capacity of hemoglobin, infection with gas-producing bacteria — all these and more have been advanced as mechanisms that could trigger the formation of the gas embolisms at some point. Very likely GBS has multiple causes, but most experts now believe it is due to physical conditions in the seahorse tank rather than any sort of pathogen, and I would be happy to share my thoughts on the matter with you, for whatever it’s worth.

For starters, let me stress that if it’s very unlikely that any sort of disease organisms or pathogen causes GBD. It is not at all contagious and does not appear to spread from seahorse to seahorse. To my knowledge, no one has ever been able to isolate a pathogen from the marsupium of the male with pouch emphysema or from the subcutaneous emphysema that characterize seahorses with tail bubbles. If bacteria play a role in GBD, I am confident it is only as a secondary infection.

In other words, gas bubble syndrome is not a disease that seahorses contract after being exposed to a pathogen of some sort, but they will often develop the condition when kept in a system that exposes them to gas supersaturation, insufficient water depth, stress, inadequate water circulation, a bacteria-laden substrate or other environmental factors conducive to the formation of gas emboli. In other words, it is an environmental disease, triggered by certain conditions within the aquarium itself. In my experience, the environmental triggers that are most often associated with GBS are as follows:

1) Insufficient depth (aquaria that are less than 20 inches deep are very susceptible to GBS, and the taller the aquarium is, the more resistant it will be to GBS).

2) Gas supersaturation of the aquarium water, which can lead directly to the formation of gas emboli within the blood and tissues of seahorses.

3) Changes in the seahorse’s blood chemistry (i.e., acidosis). Anything that tends to acidify the blood of the seahorses can result in GBS, including stress, low levels of dissolved oxygen and/or high levels of CO2, and low pH in the aquarium water, among other factors.

Maintaining your reduced specific gravity and water temperature are good ways to minimize future problems with GBS due to gas supersaturation, but there are a number of other things to keep in mind in that regard as well.

For example, tall aquariums minimize problems with GBS because the deeper the water and the greater the hydrostatic pressure, the more dissolved gases the water (and the seahorse’s blood) can hold in solution. By the same token, the shallower the aquarium and the less water pressure there is, the less dissolved gases the water can hold and the more likely gas is to come out of solution and form gas emboli (i.e., seed bubbles) in the blood and tissues.

The point is that the greater hydrostatic pressure at increased depth is known to protect seahorses against GBS, whereas the reduced hydrostatic pressure in shallow aquaria is known to be conducive to gas bubble syndrome. I have found that GBS is a very common problem for seahorses in home aquariums that are less than 24-inches tall, whereas there is considerable evidence that tanks 3 feet deep or more provide a measure of protection against GBS. This is because the gas emboli that cause GBS form more readily at reduced hydrostatic pressure, and will go back into solution again if the hydrostatic pressure is increased sufficiently, and obviously the deeper the aquarium the greater the hydrostatic pressure at the bottom of the tank. (In fact, seahorses with GBS can often be cured by submerging them at depths great enough to recompress them (> 10 feet) and cause the gas to go back into solution.)

In case you haven’t seen it before, Lisa, here is some information that reviews the most common aquarium stressors, among other causes of GBS, and discusses some simple methods for minimizing problems with GBS. Please look it over closely to see is a if any of these factors may have contributed to this problem in your case:

Preventing Gas Bubble Syndrome

Since GBS is caused by physical factors in the seahorse setup, when the affliction crops up, it’s a red flag that indicates that there’s something amiss with the conditions in your tank. With that in mind, I would like to quickly review some of the preventative measures aquarists can take to minimize problems with Gas Bubble Syndrome:

(1) Aquarium options (Giwojna, Jan. 2004):

Taller is better. When shopping for a seahorse setup, opt for the tall or high model of the largest aquarium you can reasonable afford and maintain. If the tank is too short, male seahorses may not be able to get enough pumping action in as they ascend and descend during courtship displays and mating (the copulatory rise) to flush out their pouches and cleanse them properly (Cozzi-Schmarr, 2003). This can contribute to bloated pouch, a type of pouch emphysema.

As a rule, your seahorses require a minimum of three times their height (total length) in vertical swimming space in order to mate comfortably and help avoid this sort of pouch gas problem.

Other forms of GBS are also believed to be depth related, but the aquarium must be greater than 30 inches deep to provide any significant protection against them, which is not feasible for most hobbyists (Giwojna, Jan. 2004). As an example, a water depth of at least 3 feet is known to protect the Hawaiian seahorse (Hippocampus fisheri) against GBD (Karen Brittain, pers. com.).

If you’ve had a problem with GBS in the past, look for a tank at least 20-30 inches tall, reduce your water temp to 68°F-72°F, reduce the specific gravity of the aquarium water, and avoid overly tall hitching posts that reach near the water’s surface (Cozzi-Schmarr, 2003). You want to encourage the seahorses to hang out near the bottom in order to take advantage of every inch of depth your aquarium can provide.

(2) Filtration options (Giwojna, Jan. 2004):

Gas supersaturation of the water can occur whenever the dissolved gas pressure in the water is greater than the atmospheric pressure. When that happens, the dissolved gases in the seahorse’s tissues are no longer in equilibrium with the surrounding aquarium water, causing gas to move into the area with lower partial gas pressure — the tissues and blood of the seahorse – and come out of solution, forming gas emboli! Providing proper filtration, circulation, and aeration can help prevent this.

Add:
Trickle filter (acts as a de-embolizing tower or degassing column in a limited fashion).
External filter that returns water as a "water fall" or a canister filter with a spray bar return positioned so that it roils the water surface.
Sump with strong aeration.
Overflow drains, as opposed to siphon/suction tubes.
Surface agitation to facilitate efficient gas exchange.
Increased circulation and water movement.
Extra airstone(s) just below the surface of the water.

Having a trickle filter, water "falling" into the tank as it’s returned, or strong aeration and surface agitation in the tank or the sump will help off-gas any supersaturated dissolved gases (Giwojna, Jan. 2004). This will also help off-gas a build up of CO2 and the associated pH drop that some tanks experience when the lights go off and photosynthesis has no longer taking place (Giwojna, Jan. 2004). The off gassing or degassing takes place only at the very air/water interface, so you want to spread the water into very thin sheets and let it be in contact with the atmosphere for an extended period (Robin Weber, pers. com.). That is precisely what a degas column does by trickling water over solid media open to the atmosphere, and if properly maintained and operated, a wet/dry trickle filter or biowheel filter can often perform the same function to a limited extent (Jorge A. Gomezjurado, pers. com.). For best results, the outflow from a trickle filter should go into a baffled chamber that will allow bubbles to dissipate before they enter pumps or plumbing restrictions (J. Charles Delbeek, pers. com.).

Avoid:
Airstones, air lifts, bubble wands, etc., that are submerged deeper than 18 inches.
Leaky pumps.
Subsurface entry of the inflowing or recirculating water.
Protein skimmers that generate a bubble column by injecting air under pressure at depth.

On small, closed-system aquariums, supersaturation is often due to the entraining of air on the intake side of a leaky pump, which then chops the air into fine microbubbles and injects it into the water (Cripe, Kowalski and Phipps, 1999). Water and air are thus mixed under high pressure and forced into the water column, which can result in gas supersaturation. An air leak in inflowing or recirculating water that enters the tank below the surface can cause the same thing (Cripe, Kowalski and Phipps, 1999). Allowing the water to splash before it enters the tank is a simple way to prevent this from happening. The splashing helps the water to expel excess gas and reach equilibrium with the ambient air pressure (Giwojna, Jan. 2004).

Likewise, airstones, air lifts, bubble wands and the like can cause problems if they are too deep because they will cause gas to dissolve in water to match the ambient pressure (the current atmospheric pressure) PLUS the pressure of the water column above the stone. If they are immersed at a depth greater than 18 inches, the pressure of the water column above them may be sufficient to cause low-level gas supersaturation of the water, especially when there is little atmosphere/water interface (Colt & Westers, 1982). For example, Robin Weber found that airstone submerged in reservoirs 3 feet deep produced gas supersaturation at the Monterey Bay Aquarium. The airstones produced supersaturation at a level of about 104%, and the only cases of GBS she has ever observed at the aquarium occurred in the most supersaturated exhibits. So keep your airstones shallow!

Protein skimmers that inject air under pressure at depth, or produce bubbles a foot or more below the surface, can be problematic for seahorses and other fish fry again because that can cause gas to dissolve in the aquarium water at ambient pressure (the current atmospheric pressure) PLUS the pressure of the water column above the bubbles. Under certain circumstances, this can cause low level gas supersaturation of the water and contribute to problems with gas bubble disease (Colt & Westers, 1982) in syngnathids (i.e., seahorses and pipefish). Other skimmers can also cause problems by releasing clouds of microbubbles into the aquarium, which is unsightly and can contribute to certain forms of gas bubble syndrome in seahorses and pipefish such as subcutaneous emphysema, chronic pouch emphysema, Exopthalmia, and hyperinflation of the gas bladder under certain circumstances. (Problems can result if the microbubbles are drawn into the filters or water pumps and pressurized in the process.) So if you have had problems with GBS in a home aquarium filtered by a protein skimmer, consider removing or disabling the protein skimmer to determine if that makes a difference for the better…

(3) Eliminate stress (Giwojna, Jan. 2004):

Avoid overcrowding.
Avoid aggressive tankmates.
Avoid heat stress and temperature spikes.
Install a titanium grounding probe to eliminate stray voltage.
Avoid exposing the seahorse tank to excessive noise or heavy foot traffic.
Use a cork or Styrofoam aquarium pad beneath the tank to deaden vibrations.

Stress has been linked to GBS in seahorses via the following mechanism: chronic or prolonged stress causes changes in the seahorse’s blood chemistry (acidosis), which in turn affects the oxygen-carrying capacity of certain types of hemoglobin, and the reduced oxygen-carrying capacity of hemoglobin can then causes embolisms to form in the blood.

The excess of protons (H+) under acid conditions also causes carbonic anhydrase to shift to producing CO2 from carbonic acid in the bloodstream, and the CO2 that results can likewise lead to gas embolisms under certain circumstances (Giwojna, Jan. 2004).

Mic Payne is one of the professionals who feel GBS is most likely a stress-related affliction. He believes it is often a result of chronic stress due to antagonistic behavior by overaggressive males, particularly if they are overcrowded (Payne, pers. com.). Exposing our seahorses to any type of stress may leave them predisposed to GBS (and vulnerable to many other diseases as well). Reduce the stress levels on our seahorses and we reduce the incidence of GBS accordingly (Giwojna, Jan. 2004).

(4) Maintain optimum water quality (Giwojna, Jan. 2004):

Don’t overfeed and remove leftovers promptly.
Employ an efficient cleanup crew.
Practice sound aquarium management and maintenance.
Monitor the aquarium parameters regularly.
Maintain total alkalinity and keep your pH between 8.1-8.4
Maintain a strict schedule for routine water changes.
Gradually reduce the water temperature to increase the amount of dissolved gases it can hold.
Reduce the salinity in the main tank to increase the amount of dissolved gases the water can hold.

When he was experimenting with possible treatments for GBS, Paul Groves (Head Aquarist at Underwater World in Perth, Australia, at the time) was able to produce all the different forms of GBS in a control group of Hippocampus breviceps simply by exposing them to a dirty, bacteria-laden substrate. His seahorse setup was far better than any hobbyist could hope for — an open system with 100% flow through from the ocean and a live sand base, yet all the seahorses in the tank eventually developed GBS (Groves, pers. com.). Males with chronic pouch gas were the first to appear, followed by specimens with internal GBS, and finally subcutaneous gas bubbles appeared on the tails and snouts of the others Groves, pers. com.). The weakness of Paul’s setup was poor circulation, and for experimental purposes, he deliberately allowed fecal matter and uneaten nauplii to build up on the bed of live sand. (Groves found that antibiotics were totally ineffective in treating GBS, but he eventually cured 10 of the 12 affected seahorses by pressurizing them at a depth of 4 meters.)

It is not clear whether stress from the dirty conditions or exposure to such a high density of bacteria triggered the problem in this case, but the lesson is loud and clear all the same — it pays to keep those aquariums clean (Giwojna, Jan. 2004)! If we keep our seahorses setups clean, we will keep our problems with GBS to a minimum (Giwojna, Jan. 2004).

Maintaining the proper pH is especially important for seahorses, since low pH in the aquarium can contribute to the acidosis under certain circumstances, leading to gas embolisms via the same mechanisms as stress-induced GBS (Giwojna, Jan. 2004).

Likewise, it’s important to remember that the warmer the water, the less dissolved oxygen it can hold. Elevated water temperatures increase the metabolism of your seahorses, and therefore their consumption of oxygen, at the same time that the rise in temperature is reducing the amount of dissolved oxygen in the water. That creates a dangerous situation for seahorses and may well result in respiratory distress and rapid, labored breathing, as well as contributing to asphyxia and gas supersaturation under certain circumstances. Reducing the water temperature will increase the amount of dissolved oxygen and other gases the water can hold before it becomes saturated, reducing the chances of gas supersaturation (hence GBS) and hypoxia accordingly.

There is also an inverse relationship between salinity and dissolved oxygen. The higher the specific gravity or salinity, the less dissolved oxygen (and other dissolved gases) the water can hold. By the same token, the lower the salinity or specific gravity, the more dissolved gases the water can hold. Sometimes the specific gravity in a seahorse tank can creep up unbeknownst to the aquarist due to evaporation of the aquarium water, and the higher the specific gravity gets, the lower the dissolved gas levels in the aquarium will be and the greater the chances that the aquarium water could become supersaturated with dissolved gas. Lowering the specific gravity in the home aquarium as to at least 1.020 is a good way to eliminate such potential complications. Seahorses will be perfectly comfortable at a specific gravity of 1.015-1.017 and can tolerate a specific gravity as low as 1.010. Reducing the salinity will help prevent potential problems with gas supersaturation and therefore GBS.

(5) Water changing precautions (Giwojna, Jan. 2004):

It’s an excellent idea to use Reverse Osmosis (RO) or Deionized (DI) or RO/DI water for your changes because it’s much more pure than tap water. However, water purified by such methods is very soft and must be buffered before it’s used so it won’t drop the pH in your aquarium when it’s added (Giwojna, Jan. 2004).

When mixing saltwater for your marine aquarium, it’s important to fill your container with all the water you will need BEFORE adding the salt mix. In other words, if you are mixing up 5 gallons of new saltwater, fill the mixing container with 5 gallons of water and then add the salt. If you do it the other way around — dump the salt mix in the container and then start filling it with water, the water can become saturated with salt to the point that the calcium precipitates out. This calcium precipitation will turn the water milky and can also lower the pH to dangerous levels (Giwojna, Jan. 2004).

Water changes can also be a problem because of the supersaturation of gases in tap water. Tap water distribution systems are maintained under pressure at all times, both to insure adequate flow and to prevent polluted water from outside the pipes from entering in at leaks. Any additional gas introduced into these pipes (from a leaky manifold, for example) will be dissolved at these are higher partial pressures, and will often be supersaturated when it emerges from the tap (Giwojna, Jan. 2004). Also, as we have previously discussed, gases are more soluble in cold water than warm, so when gas-saturated cold water emerges from the tap and warms up in an aquarium, or is warmed up and preadjusted to aquarium temps prior to making a water change, the water can become supersaturated (Giwojna, Jan. 2004). This must be avoided at all costs because gas supersaturation is one of the factors that can contribute to Gas Bubble Syndrome in seahorses and other fish.

To prevent this, tap water should be allowed to sit for several days beforehand or gentle aeration can be used to remove gas supersaturation before a water change (just make sure your airstones are not be submerged greater than 18 inches while you’re aerating your freshly mixed water; (Giwojna, Jan. 2004)). Some brands of artificial sea salt also produce low levels of ammonia immediately after mixing with water, and aging or aerating the newly mixed water as described above will dissipate this residual ammonia.

Most of the above is mentioned for future reference for hobbyists that have well-established seahorse tanks — I realize there aren’t many modifications you can make after the fact, once your system is already up and running (Giwojna, Jan. 2004). But there are a few things you can try with your existing system that should help.

First of all, whenever you find yourself dealing with an environmental disease such as GBS, a water change is an excellent place to start. At the first sign of GBS, I suggest you combine a 25%-50% water change with a thorough aquarium clean up (Giwojna, Jan. 2004).

Secondly, consider adding an ordinary airstone to your tank, anchored just beneath the surface of the water. That will add surface agitation, extra aeration, and better gas exchange at the air/water interface (Giwojna, Jan. 2004). Unless you’re quite certain your system already has plenty of water movement, it is also advisable to add a small powerhead for extra circulation (Giwojna, Jan. 2004). Seahorses can handle more water movement than most folks realize, and you can always turn it off during feedings. Just screen off the intake for the powerhead as a precaution so it can’t accidentally suck up a curious seahorse (Giwojna, Jan. 2004).

Thirdly, I recommend that home hobbyists who have had a problem with GBS in the past reduce the salinity in their seahorse tanks to at least 1.020 in order to increase the amount of dissolved gases the water can hold before it become saturated. Reducing the specific gravity to 1.015-1.017 is even better in most cases, providing you aren’t keeping live corals or delicate invertebrates in your seahorse tank. Likewise, reduce the water temperature in tanks with a history of GBS to around 68°F-72°F in order to increase the amount of dissolved gases the water can hold before it become saturated. Both these simple measures will help prevent gas supersaturation and reduce future problems with GBS accordingly.

Finally, use shorter hitching posts and holdfasts that will confine your seahorses to the bottom half of the aquarium and reduce the water temperature. Shorter hitching posts will get the maximum benefit from whatever depth your tank can provide, and lowering the water temperature and specific gravity allows the water to hold more dissolved gases, which can help avoid any tendency toward supersaturation (Cozzi-Schmarr, 2003).

Those simple measures may make a big difference. Just maintain good water quality, provide your seahorses with the stress-free environment, add a shallow airstone and perhaps an extra power head to provide better water movement and gas exchange, remove your protein skimmer as a precaution, keep things cool and reduce the water temperature in your seahorse tank, and you can reduce your risk of GBS considerably.

That’s my thinking with regard to preventing GBS, Lisa and Andrew. I suspect that very few of the factors mentioned above apply to your seahorse setup,but they are common problems for many home aquarists.

Best of luck with your seahorses, Lisa and Andrew! Here’s hoping your troubles with gas bubble syndrome are soon a thing of the past.

Respectfully,
Pete Giwojna, Ocean Rider Tech Support


America's Only Seahorse Aqua-Farm and One of Hawaii's Most Popular Attractions

Ocean Rider seahorse farm is a consistent Trip Advisor Certificate of Excellence Award Winner and "Top 10 Things To Do" Kona, Hawaii attraction. Our "Magical Seahorse Tours" are educational and fun for the whole family.

Tour tickets are available for Purchase On-Line. Space is limited and subject to availability.

small seahorse Ocean Rider, Inc. is an Organic Hawaiian-Based Seahorse Aqua-Farm & Aquarium that Follows Strict Good Farming Practices in Raising Seahorses and Other Aquatic Life.

Seahorse Hawaii Foundation

Inspiring ocean awareness by saving the endangered seahorse and sea dragons around the world from extinction through conservation, research, propagation, and education.

Help us save the seahorse and the coral reefs they live in with a tax deductible contribution to the Seahorse Hawaii Foundation. You will be helping to protect and propagate over 25 species of endangered seahorses, sea dragons and friends.

Make A Tax-Deductible Donation Today!

A Different Kind of Farm (Video) »

Ocean Rider Kona Hawaii

Ocean Rider Kona Hawaii
Seahorse Aqua-Farm & Tours

73-4388 Ilikai Place

Kailua Kona, Hawaii 96740

Map & Directions


808-329-6840

Contact Ocean Rider


Copyright ©1999-2023
All Rights Reserved | Ocean Rider Inc.

My Online Order Details

Purchase Policy

Site Terms and Conditions