Re:sick female seahorse

#4759
Pete Giwojna
Guest

Dear duckabut:

Okay, that’s good — if the seahorses are a pair of Sunbursts (Hippocampus erectus) that you recently received that allows us to rule out some things. The Ocean Rider H. erectus are guaranteed to be free of pathogens and parasites when they arrive, so the only way they could have developed a problem with ectoparasites or protozoans is if you had introduced another fish from your LFS or another source that was infested. It sounds like the Sunbursts are the only fish in the aquarium, so I don’t believe you are dealing with a parasite problem.

However, it appears that your seahorse tank has experienced a spike in the nitrite levels and the symptoms you describe can be attributed to nitrite toxicity. If the nitrite (NO2) level in the aquarium is 0.8, that is eight times the acceptable level (0.000 — 0.100) and is most likely the cause of the problem. Here is some more information on the basic water quality parameters you should be monitoring, including the normal or acceptable range:

<open quote>
Water Quality Parameters & Water Chemistry (complete)

Regular partial water changes and a sensible aquarium maintenance schedule will help to maintain good water quality, and it is important to test the water quality parameters in your seahorse tank regularly in order to detect water quality issues and correct them before they become a problem for the seahorses. For this reason, it is advisable to test the pH, specific gravity, ammonia, nitrite, and nitrate levels routinely, at least once a week, as well as immediately at the first sign of trouble. The following information will help you interpret the results from your test kits and alert you to likely causes when the readings are not where they should be.

Basic Water Quality Parameters

Ammonia (NH3/NH4+):
Natural Seawater Value = 0.010 mg/L
Acceptable Range = 0.000 to 0.050 mg/L
Optimum Level = 0 at all times

Ammonia is highly toxic to both fish and invertebrates in even small amounts (> 0.05 mg/L or ppm). Causes of ammonia toxicity include: immature biofilter (new tank syndrome), impairment of the biological filtration due to antibiotics and other medications, overfeeding, overstocking and dead specimens that go undetected (Webber, 2004). Ammonia levels can also rise after the addition of new animals, after a water change, or following a heavy feeding. Any ammonia level above 0.05 mg/L is a cause for concern, and the source must be found and corrected immediately. Be sure to maintain a good schedule of water changes.

Nitrite (N02):
Natural Seawater Value = 0.010 mg/L
Acceptable Range = 0.000 to 0.100 mg/L
Optimum Level = 0 at all times

Nitrite is slightly less poisonous to fishes than ammonia, but deadly to many invertebrates at very small concentrations. Residual levels of nitrite are common in marine aquariums. Levels of 0.05 or less are of little concern in a fish-only aquarium. If the levels are higher than this, the source should be found and corrected immediately. Even trace amounts of nitrite can wreak havoc among the live corals and delicate invertebrates in a reef tank. High levels of nitrite result from the same causes as unacceptable levels of ammonia.

Nitrate (N03):
Natural Seawater Value = 0.050 mg/L
Acceptable Range = 0.000 to 20 mg/L
Optimum Level = below 10 mg/L in fish-only tanks; 0 mg/L in reef tanks.

Nitrate is the end product of the process of nitrification, formed during the Nitrogen Cycle by the oxidation of nitrite by aerobic bacteria. Nitrate is relatively nontoxic to fishes, but elevated levels (> 20 mg/L) are stressful to seahorses over the long term and promote the growth of nuisance algae. Reef invertebrates can be much more sensitive to nitrate, and concentrations as low as 0.06 mg/L can cause problems for symbiotic stony corals. Any level above 5.0 mg/L in reef aquariums is a reason for concern and should be corrected immediately. The nitrate level is a good indicator of water quality and rising levels of nitrates are an indication of deteriorating water quality. For best results, consider using live rock and/or a live sand bed (preferably situated in your sump) in conjunction with a good protein skimmer to help filter your seahorse setup. The skimmer will remove excess organic compounds before they enter the nitrogen cycle, and live rock and a deep sand bed will provide significant denitrification ability, all of which will help keep your nitrates down. Don’t overstock, don’t overfed, remove leftovers promptly (a good cleanup crew is useful here), grow and harvest macroalgae, practice good aquarium maintenance and maintain a sensible schedule for water changes.

pH:
Acceptable Range = 8.0 – 8.4 (typically fluctuates between 7.9 at night and 8.4 during the day)
Optimum Level = ~8.2 and stable.

The pH is a measurement of the alkalinity or acidity of aquarium water. A pH of 7 is considered to be "neutral," neither acid or alkaline, while pH levels above 7 are considered to be alkaline or "base," and pH levels below 7 are considered to be acidic. Marine aquaria need to maintain alkaline conditions at all times, and low pH (< 7.6) is especially detrimental to seahorses because it is conducive to Gas Bubble Disease. Normal daily fluctuations in pH are to be expected in the aquarium, and are generally gradual enough not to be stressful (Webber, 2004). Maintaining a sump or refugium with a reverse photoperiod to the main tank can eliminate these natural pH cycles. The pH in an aquarium shops naturally over time, primarily due to the decay of organic matter, such as detritus and animal wastes. Regular partial water changes counteract this tendency and are the key to maintaining stable pH. Buffers can also help but the hobbyist should beware that excessive use of pH buffers may increase KH values to dangerously high levels.

The use of RO/DI water or another softened source to mix up saltwater for a marine aquarium is highly recommended but often results in saltwater with relatively low pH. Water purified by such methods is very soft and must usually be buffered in order to establish the proper pH and maintain the total alkalinity and carbonate hardness of the aquarium water at the proper level.

To raise your pH to the proper range (8.0-8.4) if this proves to be a problem, just obtain one of the commercially made products designed to adjust the pH upwards in saltwater aquariums and use it according to the instructions. Such a product should be available from any good LFS that handles marine fishes and invertebrates; they typically include sodium bicarbonate as their primary active ingredient and are often marketed under names such as "pH Up" or something similar. If you wish, ordinary baking soda (bicarbonate) from your kitchen will work just as well for elevating the pH.

In the unlikely event that the pH of the aquarium water is too high, it can be dropped using one of the pH-lowering products from your local fish store. However, many of these products use phosphate-based chemicals to lower the pH, and this is undesirable since the phosphates can fuel the growth of nuisance algae. A better way to lower the pH is by adding RO/DI water until it comes down to the proper level.

Specific Gravity:
Acceptable Range = 1.020 -1.026
Optimum Level = 1.0245 for most seahorses.

The specific gravity measures the density of your aquarium water relative to the density of distilled water, and aquarists use it to estimate the salinity of their aquarium water (Trevor-Jones, Dec. 2002). In effect, it’s one way to measure the saltiness of your tank, since the more salt that is dissolved in the water, the denser it becomes. This can also be done by measuring the total amount of dissolved solids in the water, which is expressed as the salinity in parts per thousand (ppt). Hobbyists must remember that constant evaporation of freshwater from the aquarium causes the salts to become more concentrated, which increases the specific gravity or salinity accordingly. Therefore, it is necessary to top off the tank with freshwater regularly in order to make up for evaporation and maintain the desired specific gravity. Seahorses tolerate a wide range of salinity very well and hyposalinity (specific gravity at 1.011-1.015) is often used to help rid them of ectoparasites.

Most home hobbyists measure the salinity or specific gravity of their aquarium using a hydrometer. There are several types of hydrometers, including some that float in the water (you read the indicated specific gravity from a scale at the meniscus or waterline on the neck of the floating hydrometer after it has reached equilibrium and is no longer bobbing up or down). But nowadays, most home aquarist prefer the convenience of a swing-arm hydrometer, which is easier to read. SeaTest makes one such inexpensive hydrometer.

The SeaTest hydrometer has a simple swing arm to measure the specific gravity of the aquarium and allow you to see how salty it is. You just fill the hydrometer with aquarium water, tap it to make sure there are not any air bubbles clinging to the swing arm, and the pointer will then indicate the current specific gravity in the aquarium. A reading of anywhere between 1.020-1.026 is acceptable, with 1.0245 being optimal.
<Close quote>

As you can see, duckabut, the level of nitrite (NO2) is unacceptable and you need to determine why it is high and correct the nitrite levels in order to get this problem under control. I would recommend performing a series of partial water changes to reduce the nitrite levels and restore your water quality as soon as possible.

In addition to the water changes, administering a quick 10-second dip in a concentrated methylene blue solution can also be helpful when you’re dealing with nitrite toxicity, as explained below:

The most obvious symptoms of ammonia poisoning and nitrite toxicity are a loss of equilibrium, hyperexcitability, increased respiration and oxygen uptake, and increased heart rate. At extreme ammonia/nitrite levels, fish may experience convulsions, coma, and death. Seahorses exposed to less extreme ammonia/nitrite levels will struggle to breathe. They will be lethargic and exhibit rapid respiration. They may appear disoriented, periodically detaching from their hitching posts only to sink to the bottom.

Ammonia poisoning and nitrite toxicity are completely reversible providing the seahorses weren’t exposed to toxic levels for too long, and the best first aid you can provide for ammonia/nitrite poisoning is to immediately transfer the seahorses into clean, well-aerated saltwater with zero ammonia and zero nitrite. Adding an airline or airstone to your seahorse tank and performing a series of partial water changes will be very helpful.

The next thing you should do is to give the seahorses a quick 10-second dip in concentrated methylene blue to help them recover, as discussed below.

Exposure to moderate levels of ammonia and nitrite, or high levels of nitrates, can change the normal hemoglobin in the seahorse’s blood stream to a form (i.e., methhemoglobin) that is no longer able to transport oxygen. If this becomes severe enough, it will leave the affected seahorse starved for oxygen, which makes it very weak and fatigued. As a result, the affected seahorses may detach themselves from their hitching posts periodically and rest on the bottom, unable to exert themselves in their weakened condition. As you can imagine, being deprived of oxygen really wipes them out in terms of loss of energy and stamina. And it also results in respiratory distress, and rapid, labored breathing as they try to oxygenate themselves and compensate for the lack of normal hemoglobin.

One of the properties of methylene blue is that it can reverse this process and convert the methhemoglobin in the red blood cells back into normal hemoglobin, which can then pick up and transport oxygen again as usual. That’s why it is so helpful in relieving shipping stress and treating ammonia exposure and nitrite poisoning. For this reason, you may want to pick up some methylene blue at your local fish store and keep it on hand in case it is ever needed (the Kordon brand of methylene blue is best, in my opinion). So be prepared to give the seahorses a quick dip in methylene blue as soon as possible.

The usual criteria for determining whether or not methylene blue is needed to help seahorses recover from exposure to high levels of ammonia is their respiration. If the seahorse has labored breathing — huffing or rapid respiration — then methylene blue is called for. Likewise, if the seahorse is experiencing convulsions or it’s behavior otherwise indicates it is suffering from more than temporary disorientation and loss of equilibrium, such as lying prostrate on the bottom, unable to right itself again at all after two or three hours have passed, it may benefit from methylene blue to assist its recovery.

Commonly known as "meth blue" or simply "blue," methylene blue is a wonderful medication for reversing the toxic effects of ammonia and nitrite poisoning. Methylene blue transports oxygen and aids breathing. It facilitates oxygen transport, helping fish breathe more easily by converting methemoglobin to hemoglobin — the normal oxygen carrying component of fish blood, thus allowing more oxygen to be carried through the bloodstream. This makes it very useful for treating gill infections, low oxygen levels, or anytime your seahorses are breathing rapidly and experiencing respiratory distress. It is the drug of choice for treating hypoxic emergencies of any kind with your fish. However, methylene blue will destroy nitrifying bacteria so it should be used in a hospital tank or as a brief bath or dip only (if used in an established aquarium, it will impair the biological filtration and the tank may need to be cycled all over again).

Here is some more information that may be helpful when you treat the seahorses with methylene blue, duckabut:

If you can obtain the Kordon brand of Methylene Blue (available at most well-stocked local fish stores), there are instructions for administering it as a very brief, concentrated dip are as follows:

For use as a dip for treatment of fungus or external parasitic protozoans and cyanide poisoning:
(a) Prepare a nonmetallic container of sufficient size to contain the fish to be treated by adding water similar to the original aquarium.
(b) Add 5 teaspoons (24.65 ml) per 3 gallons of water. This produces a concentration of 50 ppm. It is not recommended that the concentration be increased beyond 50 ppm.
(c) Place fishes to be treated in this solution for no longer than 10 seconds.
(d) Return fish to original aquarium.

When you administer such a dip, hold the seahorse in your hand throughout the procedure and time it closely so that the dip does not exceed 10 seconds.

And here are Kordon’s instructions for administering the methylene blue in a hospital tank if longer-term treatment seems appropriate to reverse more severe cases of nitrite poisoning and ammonia toxicity:

As an aid in reversal of nitrite (NO2-) or cyanide (CN-) poisoning of marine and freshwater aquarium fishes:
(a) Remove carbon filter and continue to operate with mechanical filter media throughout the treatment period.
(b) Add 1 teaspoon of 2.303% Methylene Blue per 10 gallons of water. This produces a concentration of 3 ppm. Continue the treatment for 3 to 5 days.
(c) Make a water change as noted and replace the filter carbon at the conclusion of the treatment.

See the following link for more information on treating with Kordon’s Methylene Blue:

Click here: KPD-28 Methylene Blue
http://www.novalek.com/archive/kpd28.htm

If you obtained a brand of methylene blue other than Kordon, just follow the instructions the medication comes with.

One other tip, duckabut: if you ever need to handle seahorses to administer first aid measures or treat them in a hospital tank, it’s best not to net them when you are manipulating the seahorse:

Handling Seahorses

I do not like to use an aquarium net to transfer or manipulate seahorses, since their delicate fins and snouts can become entangled in the netting all too easily. I much prefer to transfer the seahorses by hand. Simply wet your hand and fingers (to avoid removing any of the seahorse’s protective slime coat) and scoop the seahorses in your hand. Allow them to curl their tail around your fingers and carefully cup their bodies in your hand to support them while you lift them out of the water. When you gently immerse your hand in the destination tank, the seahorse will release its grip and swim away as though nothing out of the ordinary has happened.

Composed of solid muscle and endowed with extraordinary skeletal support, the prehensile tail is amazingly strong. Indeed, large specimens have a grip like an anaconda, and when a 12-inch ingens or abdominalis wraps its tail around your hand and tightens its hold, its vise-like grip is powerful enough to leave you counting your fingers afterwards!

In fact, it can be quite difficult to remove an attached seahorse from its holdfast without injuring it in the process. Never attempt to forcibly detach a seahorse from its hitching post! When it feels threatened, it’s instinct is to clamp down and hold on all the tighter. When you must dislodge a seahorse from its resting place for any reason, it’s best to use the tickle technique instead. Gently tickling the underside of the tail where it’s wrapped around the object will usually induce the seahorse to release its grip (Abbott, 2003). They don’t seem to like that at all, and will quickly let go to move away to another spot. Once they are swimming, they are easy to handle.

In summation, concentrate on restoring your water quality to reduce the nitrite to acceptable levels by performing a series of partial water changes and be prepared to give your seahorses a quick dip in concentrated methylene blue or to treat them with methylene blue in your hospital tank, if necessary, until you get the nitrite levels under control again.

Ammonia spikes and nitrite spikes are a common problem following a heavy feeding if you are not offering the seahorses the frozen Mysis properly. For this reason, and others, it’s important to avoid scatter feeding or broadcast feeding the frozen Mysis and to clean up any uneaten leftovers as soon as possible. Whether it is a tank with lots of live rock, a modified minireef, a seagrass system or a mangrove biotype, a well-designed seahorse setup is an elaborate environment. A certain level of complexity is necessary in order to assure that our seahorses behave naturally (Topps, 1999) and to provide our ponies with plenty of hitching posts and shelter, and enough sight barriers to assure them a little privacy when they feel the need to be alone. Their homemade habitat may thus take the form of a labyrinth of live rock, an intricate arrangement of corals and gorgonians, a well-planted bed of seagrass or macroalgae, or a full-fledged reef face. When feeding seahorses in such intricate surroundings, the worst thing you can do is to scatter a handful of frozen Mysis throughout the tank to be dispersed by the currents and hope that the hungry horses can track it all down. Inevitably some of the frozen food will be swept away and lodge in isolated nooks and crannies where the seahorses cannot get it. There it will begin to decompose and impair your water quality, which is why ammonia spikes are common after a heavy feeding. Or it may be wafted out into the open again later on and eaten after it has gone bad. Either outcome can lead to dire problems. Target feeding the seahorses or training them to use a feeding station are the best ways to avoid such complications, as explained in more detail below:

Use a feeding station.

Seahorses respond very well when they are fed at the same time and place each day. They quickly learn the routine and will come to recognize their keeper as the one who feeds them — the giver of gourmet delights! Once that happens, they will often beat you to the spot, gathering around their feeding station as soon as they see you approach.

In fact, the aquarist can easily condition his seahorses to come a running at feeding time. Before you open the aquarium cover, make a point of lightly tapping it a few times or rapping on it gently. The seahorses will quickly learn to associate the tapping with the mouthwatering morsels that follow, and before you know it, they will respond by gathering at the feeding station as if you were ringing the dinner bell.

To facilitate this process and make feeding them easier, choose a feeding station that’s convenient for you in a relatively uncluttered part of the aquarium, and give your seahorses their meal right there every day. The feeding station should have some convenient hitching posts situated nearby as well. Avoid using an area where currents might whisk the food away from the seahorses before they can eat it.

I know one hobbyist who uses a toadstool leather coral as his feeding station. He places the Mysis on the bowl-shaped top of the toadstool, which contains them nicely while his seahorses perch around the edges and scarf up the shrimp as if dining at a lunch counter.

Not everyone has a toadstool coral to serve as a natural feeding station, of course, but it’s easy to make your own lunch counter that will work just as well. Get a small Pyrex bowl or a similar shallow container made of clear glass or plastic (a large petri dish works great for this) and fill it about halfway with your tank substrate (Mike Kelly, pers. com.). Then sink the bowl into your sand bed until the substrate you placed in the bowl is level with the substrate in the tank (Mike Kelly, pers. com.). Leave the rim sticking up above the sand bed about a 1/2 to 3/4 of an inch or so (Mike Kelly, pers. com.). The clear glass rim of the bowl is transparent and virtually unnoticeable, so don’t worry that it will detract from the appearance of your display tank. Artfully position a few natural hitching posts around the bowl to provide your seahorses with a handy perch from which to snick up their dinner.

At feeding time, place the frozen Mysis on the sand or gravel inside the bowl. A long tube of clear plastic 1/2′ to 1′ in diameter facilitates this. The bottom of the tube is placed in the middle of the bowl and the enriched Mysis are then placed in the top of the tube, which guides them exactly where you want them as they sink. The rim sticking above the sand bed will then keep the food in place while your seahorses dine at their leisure. Afterwards, any leftovers are neatly contained, making cleanup a breeze!

Or you can always purchase a seahorse feeding station off the shelf, ready to go, as is. Artificial cup coral makes an attractive elevated "lunch counter" that does the job nicely. Elevated on a pedestal, the seahorses can perch around the edge of the cup, which contains the frozen shrimp nicely until eaten. The coral cups are very lifelike and make nifty ready-made feeding stations if positioned at a convenient (for you and your galloping gourmets) spot in your tank where currents won’t whisk the Mysis away.

Another handy item that makes a great ready-made feeding station for seahorses are the conical worm feeders designed for offering bloodworms and tubifex worms to fish. They may require a little modifying since many of them are designed to float. Depending on the type of feeder, you may have to perforate air filled chambers around the collar, weigh it down to submerge it, or cut the conical worm trap free from the rest of the feeder. Worm feeders come with a suction cup, so once you’ve overcome the buoyancy problem, they can be secured anywhere in the aquarium you want, and they work just as well with frozen Mysis as with worms. If you position the conical feeder where a slight current hits it, gently jostling and agitating the frozen Mysis inside, it is even more effective. The flow of water imparts a bit of movement to the frozen Mysis, causing it to twitch or swirl about just a bit periodically inside the feeder. This makes the thawed Mysis look all the more lifelike and quickly attracts the interest of the seahorses. They will gather around the feeder and snick up Mysis through the open top. The conical shape of these feeders contains the frozen Mysis even better than most other feeding stations.

Some hobbyists prefer a more natural looking, aesthetically pleasing feeding station, which they fashion themselves to suit their own tastes. They start with a piece of well-cured live rock that’s approximately the right size and shape, and painstakingly hollow out the center to form a shallow concave depression. This shallow bowl is fashioned by grinding it out, using an electrical moto-tool (available at any craft store or hardware store) with a carbide burr or sometimes even a shop grinder. Once the bowl has been hollowed out, a series of holes are then drilled around the circumference of this depression. Red, brown or purple Gracilaria, green Caulerpa and/or gorgonian branches are planted in these holes to create natural hitching posts. As the macroalgae takes hold and fills out, this produces an attractive feeding station that looks completely natural. It’s a great do-it-yourself project for the handy hobbyist.

An upturned clamshell also makes a nifty natural feeding station that fits in perfectly in your seahorses’ setup. Choose a colorful natural seashell for this, such as one valve of a Tridacna clam or perhaps a Lion’s Paw Scallop shell, and you have an attractive feeding station that’s perfectly appropriate for your tank. The concave interior of the bivalve shell acts as a shallow bowl to contain the frozen Mysis until it’s eaten, and unlike some feeding stations that look out of place and detract from the appearance of your tank, a seashell looks as natural as can be in a marine aquarium. My favorite for this type of feeding station is a medium-sized Abalone shell. The iridescent, opalescent colors of the upturned interior, with its magnificent polished surface of mother-of-pearl, are spectacular! An upturned abalone shell requires no further modification whatsoever, making it the ideal feeding station for the unhandy hobbyist who’s all thumbs.

Other aquarists reserve a small, transparent glass bowl or clear plastic receptacle for feeding their seahorses. They merely place the bowl or plastic container on the bottom of the tank at feeding time, add the enriched Mysis, and let their seahorses gather round and dine at their leisure as though eating from a feeding trough. A few hours later, the feeding container is removed, along with any leftovers. Quick and easy!

For more information, see my article in Conscientious Aquarist which explains exactly how to set up a feeding station and train your seahorses to use a in greater detail.. It’s available online at the following URL:

Click here: Seahorse Feeders
<<http://www.wetwebmedia.com/ca/volume_2/cav2i5/seahorse_feeders/seahorse_feeders.htm>&gt;

Target feed your seahorses and remove uneaten leftovers promptly.

The individual personalities of seahorses naturally extend to their feeding habits. Some are aggressive feeders that will boldly snatch food from your fingers, while some are shy and secretive, feeding only when they think they’re not being observed. Some like to slurp up Mysis while it’s swirling through the water column, and some will only take Mysis off the bottom of the tank. Some are voracious pigs that greedily scarf up everything in sight, and some are slow, deliberate feeders that painstakingly examine every morsel of Mysis and stare it down forever before they accept or reject it. Some eat like horses and some eat like birds. So how does the seahorse keeper make sure all his charges are getting enough to eat at mealtime? How does the hobbyist keep the aggressive eaters from scarfing up all the mouth-watering Mysis before the slower feeders get their fair share? And how can you keep active fishes and inverts with seahorses without the faster fishes gobbling up all the goodies before the slowpoke seahorses can grab a mouthful?

Target feeding is the answer. Target feeding just means offering a single piece of Mysis to one particular seahorse, and then watching to see whether or not the ‘horse you targeted actually eats the shrimp. Feeding each of your seahorses in turn that way makes it easy to keep track of exactly how much each of your specimens is eating.

There are many different ways to target feed seahorses. Most methods involve using a long utensil of some sort to wave the Mysis temptingly in front of the chosen seahorse; once you’re sure this has attracted his interest, the Mysis is released so it drifts down enticingly right before the seahorse’s snout. Most of the time, the seahorse will snatch it up as it drifts by or snap it up as soon as it hits the bottom.

A great number of utensils work well for target feeding. I’ve seen hobbyists use everything from chopsticks to extra long tweezers and hemostats or forceps to homemade pipettes fashioned from a length of rigid plastic tubing. As for myself, I prefer handfeeding when I target feed a particular seahorse.

But no doubt the all-time favorite implement for target feeding seahorses is the old-fashioned turkey baster. The old-fashioned ones with the glass barrels work best because the seahorses can see the Mysis inside the baster all the way as it moves down the barrel and out the tip. By exerting just the right amount of pressure on the bulb, great precision is possible when target feeding with a turkey baster. By squeezing and releasing the bulb ever so slightly, a skillful target feeder can keep a piece of Mysis dancing at the very tip of the baster indefinitely, and hold the tempting morsel right in front of the seahorse’s mouth as long as necessary. Or if the seahorse rejects the Mysis the first time it drifts by, a baster makes it easy to deftly suck up the shrimp from the bottom so it can be offered to the target again. In the same way, the baster makes it a simple matter to clean any remaining leftovers after a feeding session. (You’ll quickly discover the feeding tube is also indispensable for tapping away pesky fish and invertebrates that threaten to steal the tempting tidbit before an indecisive seahorse can snatch it up. And it’s great for tapping on the cover to ringing the dinner bell and summon the diners for their gourmet feast!)

In short, target feeding allows the hobbyist to assure that each of his seahorses gets enough to eat without overfeeding or underfeeding the tank. And it makes it possible to keep seahorses in a community tank with more active fishes that would ordinarily out-compete them for food, since the aquarist can personally deliver each mouthful to the seahorses while keeping more aggressive specimens at bay.

The key to keeping active specimens like firefish or compatible clownfish or cleaner shrimp successfully with seahorses is to feed the other fish and inverts with standard, off-the-shelf aquarium foods first, and once they’ve had their fill, then target feed the seahorses.

Best of luck correcting your nitrite problem and restoring your Sunburst to good health, duckabut.

Respectfully,
Pete Giwojna


America's Only Seahorse Aqua-Farm and One of Hawaii's Most Popular Attractions

Ocean Rider seahorse farm is a consistent Trip Advisor Certificate of Excellence Award Winner and "Top 10 Things To Do" Kona, Hawaii attraction. Our "Magical Seahorse Tours" are educational and fun for the whole family.

Tour tickets are available for Purchase On-Line. Space is limited and subject to availability.

small seahorse Ocean Rider, Inc. is an Organic Hawaiian-Based Seahorse Aqua-Farm & Aquarium that Follows Strict Good Farming Practices in Raising Seahorses and Other Aquatic Life.

Seahorse Hawaii Foundation

Inspiring ocean awareness by saving the endangered seahorse and sea dragons around the world from extinction through conservation, research, propagation, and education.

Help us save the seahorse and the coral reefs they live in with a tax deductible contribution to the Seahorse Hawaii Foundation. You will be helping to protect and propagate over 25 species of endangered seahorses, sea dragons and friends.

Make A Tax-Deductible Donation Today!

A Different Kind of Farm (Video) »

Ocean Rider Kona Hawaii

Ocean Rider Kona Hawaii
Seahorse Aqua-Farm & Tours

73-4388 Ilikai Place

Kailua Kona, Hawaii 96740

Map & Directions


808-329-6840

Contact Ocean Rider


Copyright ©1999-2023
All Rights Reserved | Ocean Rider Inc.

My Online Order Details

Purchase Policy

Site Terms and Conditions