Seahorse Club
Aquarium & Livestock

Feed Ezy Frozen Mysis

Seahorse Club
Aquarium & Livestock

Feed Ezy Frozen Mysis

Seahorse Club
Aquarium & Livestock

Feed Ezy Frozen Mysis

Seahorse Club
Aquarium & Livestock

Feed Ezy Frozen Mysis

Seahorse Club
Aquarium & Livestock

Feed Ezy Frozen Mysis

Seahorse Club
Aquarium & Livestock

Feed Ezy Frozen Mysis

DID I JUST ABORT BABIES MISTAKENLY!!!!!!!

Ocean Rider Seahorse Farm and Tours | Kona Hawaii Forums Seahorse Life and Care DID I JUST ABORT BABIES MISTAKENLY!!!!!!!

Viewing 2 posts - 1 through 2 (of 2 total)
  • Author
    Posts
  • #1115
    ponka
    Member

    [color=#0000FF][/color] My male was floating at the top like he has air bubble disease. So I asperated his belly, and aborted a whole brood. I have completely cleaned him out of all babies I belive and did a flush. Is it possible I am unbeliveably stupid. I am soooooo ready to cry. Would he just be floating because he wanted to, or was he pregnant and still had air bubble problems? My understanding was that I could have a peice of standard airline tubing with no stone to make sure my tank had enough O2. Is it possilbe that the line is to small and I should get something larger around. I know all 3 of my horses like to \"ride\" the bubbles. I cant understand why I am have so meny problems with air bubble disease. I am sooo confused

    Cherie

    Post edited by: ponka, at: 2007/02/11 03:49

    #3406
    Pete Giwojna
    Guest

    Dear Cherie:

    No, you didn’t do anything ill advised — you only did what had to be done and you may very well have saved your stallion’s life in the process. Pregnant males are particularly vulnerable to chronic pouch emphysema and other forms of gas bubble syndrome (GBS), and it is not uncommon for a male that is carrying a brood of young to develop problems with pouch gas in positive buoyancy. When this reaches the point where the affected male is floating at the surface, you have no choice but to release the trapped gas one way or another as soon as possible. Otherwise, the seahorse will be unable to feed and will exhaust itself struggling against the tendency to float, resulting in the build up of lactic acid in its blood and associated changes in blood chemistry (acidosis) that further aggravate its condition. Rest assured that you did the right thing, Cherie

    Pregnancy is naturally a high-risk period for pouch emphysema and pouch gas for a couple of reasons. First of all, breeding males are often especially susceptible to chronic pouch emphysema and GBS in general because of the placenta-like changes that occur in the lining of the pouch during pregnancy. Spongelike, its tissues expand as the capillaries and blood vessels swell and multiply. A film of tissue then forms around each embedded egg, providing it with a separate compartment (alveolus) of its own. The thickening of the wall of the marsupium and elaboration of pouch structures around the implanted eggs result in a dramatic increase in vascularization, and this increased blood supply (hence increased concentration of carbonic anhydrase) transports more dissolved gases to the pouch, increasing the risk of GBS accordingly. The increased blood supply to the marsupium during pregnancy thus makes breeding males increasingly susceptible to the formation of intravascular gas emboli (micronuclei or seed bubbles) at this time.

    Secondly, pouch bloat can be caused by gas produced by the decay of embryonic material and the remains of placental tissue or other organic matter (possibly even stillborn young) within the brood pouch, if the male is unable to flush it out and cleanse it properly by pumping water in and out during its pouch displays (Cozzi-Schmarr, per. com.).

    I know of a couple of cases in which male seahorses developed pouch emphysema and/or other forms of GBS every time they became pregnant. When they weren’t breeding, they were just fine, but when they were carrying a brood of young, they were invariably plagued with pouch gas and buoyancy problems. Providing the GBS was managed properly (typically by administering Diamox orally via gut-loaded shrimp, in cases like this), the affected male may be able to give birth normally and recover fully afterwards.

    So it’s possible that this could become a recurring problem for your male whenever he becomes pregnant, Cherie. If that proves to be the case, I will be happy to help you deal with the situation as it rises. When a gravid male develops problems with pouch gas and positive buoyancy during the course of his pregnancy, I usually recommend performing a needle aspiration to release the trapped gas in a noninvasive manner that make allow the male to carry his brood full term and deliver them normally in due course, as described below:

    Needle Aspirations

    A needle aspiration is a very straightforward technique that simply involves inserting a hypodermic needle through the side of the pouch, tapping into the pocket(s) of trapped gas or fluid, withdrawing the plunger on the syringe and removing the fluid or gas. If you have never done a needle aspiration before, I know it sounds a bit gruesome, but it is a surprisingly painless procedure for the seahorse and is often easier and less stressful for both the aquarist and the patient than performing pouch flushes or repeatedly massaging the pouch. Not only is a needle aspiration less traumatic, as a rule, but it is also often more effective in removing the trapped gas and relieving the problem. A needle aspiration is easier to perform if you have a helper, since an extra pair of hands is very helpful when you’re ready to withdraw the plunger on the syringe and extract the gas from the encapsulated bubble.

    The procedure is accomplished while the seahorse is held under water, just as you would if burping or flushing the pouch, and you grasp the seahorse in the same manner as well.

    Prepare the needle and syringe ahead of time by sterilizing the hypodermic. When you are ready, wet your hands first and hold the seahorse upright in the water with your non-dominant hand, allowing his tail to wrap your little finger or ring finger so he has a good grip and feels secure.

    While the seahorse is thus restrained, use your dominant hand to insert the needle into the side of the pouch (not the front) so you can tap into the pocket(s) of trapped gas.

    Remember, you are not performing a subcutaneous or intramuscular injection, so there is no need to use a shallow angle when penetrating the wall of the pouch. Depress the plunger all the way and then insert the hypodermic laterally, from the side of the pouch rather than the front, at a perpendicular angle to the wall of the pouch. Use a big firm, gentle pressure to penetrate the wall of the pouch.

    If you missed the pocket of trapped gas on your first attempt, the hypodermic may also withdraw placental fluid from the marsupium and/or yolk from ova implanted within the lining of the pouch, depending on how far advanced the pregnancy is, but that’s not a problem. Very few, if any, of the fetal fry or embryonic young are affected during a needle aspiration, compared to the alternative which is performing a pouch flush and thoroughly cleaning out his pouch.

    I don’t think the bubble stream from your standard airline tubing is the cause of the problems with gas bubble syndrome you have experienced, Cherie. Rather, it is the changes the marsupium undergoes during pregnancy that leave the gravid male so susceptible to pouch emphysema. Let’s look at some of the precautions you can take that will help minimize such problems in the future.

    Gas bubble syndrome, such as the pouch gas your male have been experiencing is typically triggered by various environmental stressors as discussed below. Here are some precautionary measures to observe, when possible, which can help to eliminate problems with GBS:

    Preventing Gas Bubble Syndrome

    Since GBS is caused by physical factors in the seahorse setup, when the affliction crops up, it’s a red flag that indicates that there’s something amiss with the conditions in your tank. With that in mind, I would like to quickly review some of the preventative measures aquarists can take to minimize problems with Gas Bubble Syndrome:

    (1) Aquarium options (Giwojna, Jan. 2004):

    Taller is better. When shopping for a seahorse setup, opt for the tall or high model of the largest aquarium you can reasonable afford and maintain. If the tank is too short, male seahorses may not be able to get enough pumping action in as they ascend and descend during courtship displays and mating (the copulatory rise) to flush out their pouches and cleanse them properly (Cozzi-Schmarr, 2003). This can contribute to bloated pouch, a type of pouch emphysema.

    As a rule, your seahorses require a minimum of three times their height (total length) in vertical swimming space in order to mate comfortably and help avoid this sort of pouch gas problem.

    Other forms of GBS are also believed to be depth related, but the aquarium must be greater than 30 inches deep to provide any significant protection against them, which is not feasible for most hobbyists (Giwojna, Jan. 2004). A depth of at least 3 feet is known to protect the Hawaiian seahorse (Hippocampus fisheri) against GBD (Karen Brittain, pers. com.).

    If you’ve had a problem with GBS in the past, look for a tank at least 20-30 inches tall, reduce your water temp to 70-degrees F, and avoid overly tall hitching posts that reach near the water’s surface (Cozzi-Schmarr, 2003). You want to encourage the seahorses to hang out near the bottom in order to take advantage of every inch of depth the aquarium can provide.

    (2) Filtration options (Giwojna, Jan. 2004):

    Gas supersaturation of the water can occur whenever the dissolved gas pressure in the water is greater than the atmospheric pressure. When that happens, the dissolved gases in the seahorse’s tissues are no longer in equilibrium with the surrounding aquarium water, causing gas to move into the area with lower partial gas pressure — the tissues and blood of the seahorse – and come out of solution, forming gas emboli! Providing proper filtration, circulation, and aeration can prevent this.

    Add:
    Trickle filter (acts as a de-embolizing tower or degassing column).
    External filter that returns water as a "water fall."
    Sump with strong aeration.
    Overflow drains, as opposed to siphon/suction tubes.
    Surface agitation to facilitate efficient gas exchange.
    Increased circulation and water movement.
    Extra airstone(s) just below the surface of the water.

    Having a trickle filter, water "falling" into the tank as it’s returned, or strong aeration in the tank or the sump will help off-gas any supersaturated dissolved gases (Giwojna, Jan. 2004). This will also help off-gas a build up of CO2 and the associated pH drop that some tanks experience when the lights go off (Giwojna, Jan. 2004). The off gassing or degassing takes place only at the very air/water interface, so you want to spread the water into very thin sheets and let it be in contact with the atmosphere for an extended period (Robin Weber, pers. com.). That is precisely what a degas column does by trickling water over solid media open to the atmosphere, and if properly maintained and operated, a wet/dry trickle filter can perform the same function (Jorge A. Gomezjurado, pers. com.). For best results, the outflow from a trickle filter should go into a baffled chamber that will allow bubbles to dissipate before they enter pumps or plumbing restrictions (J. Charles Delbeek, pers. com.).

    Avoid:
    Airstones, air lifts, bubble wands, etc., if submerged deeper than 18 inches.
    Leaky pumps.
    Subsurface entry of the inflowing or recirculating water.

    On small, closed-system aquariums, supersaturation is often due to the entraining of air on the intake side of a leaky pump, which then chops the air into fine microbubbles and injects it into the water (Cripe, Kowalski and Phipps, 1999). Water and air are thus mixed under high pressure and forced into the water column, which can result in gas supersaturation. An air leak in inflowing or recirculating water that enters the tank below the surface can cause the same thing (Cripe, Kowalski and Phipps, 1999). Allowing the water to splash before it enters the tank is a simple way to prevent this from happening. The splashing helps the water to expel excess gas and reach equilibrium with the ambient air pressure (Giwojna, Jan. 2004).

    Likewise, airstones, air lifts, bubble wands and the like can cause problems if they are too deep because they will cause gas to dissolve in water to match the ambient pressure (the current atmospheric pressure) PLUS the pressure of the water column above the stone. If they are immersed at a depth greater than 18 inches, the pressure of the water column above them may be sufficient to cause gas supersaturation of the water, especially when there is little atmosphere/water interface (Colt & Westers, 1982). For example, Robin Weber found that airstone submerged in reservoirs 3 feet deep produced excessive gas supersaturation at the Monterey Bay Aquarium. The airstones produced supersaturation at a level of about 104%, and the only cases of GBS she has ever observed at the aquarium occurred in the most supersaturated exhibits. So keep your airstones shallow!

    (3) Eliminate stress (Giwojna, Jan. 2004):

    Avoid overcrowding.
    Avoid aggressive tankmates.
    Install a titanium grounding probe to eliminate stray voltage.
    Avoid exposing the seahorse tank to excessive noise or heavy foot traffic.
    Use a cork or Styrofoam aquarium pad beneath the tank to deaden vibrations.

    Stress has been linked to GBS in seahorses via the following mechanism: chronic or prolonged stress causes changes in the seahorse’s blood chemistry (acidosis), which in turn affects the oxygen-carrying capacity of certain types of hemoglobin, and the reduced oxygen-carrying capacity of hemoglobin can then causes embolisms to form in the blood.

    The excess of protons (H+) under acid conditions also causes carbonic anhydrase to shift to producing CO2 from carbonic acid in the bloodstream, and the CO2 that results can likewise lead to gas embolisms under certain circumstances (Giwojna, Jan. 2004).

    Mic Payne is one of the professionals who feel GBS is most likely a stress-related affliction. He believes it is often a result of chronic stress due to antagonistic behavior by overaggressive males, particularly if they are overcrowded (Payne, pers. com.). Exposing our seahorses to any type of stress may leave them predisposed to GBS (and vulnerable to many other diseases as well). Reduce the stress levels on our seahorses and we reduce the incidence of GBS accordingly (Giwojna, Jan. 2004).

    (4) Maintain optimum water quality (Giwojna, Jan. 2004):

    Don’t overfeed and remove leftovers promptly.
    Employ an efficient cleanup crew.
    Practice sound aquarium management and maintenance.
    Monitor the aquarium parameters regularly.
    Maintain total alkalinity and keep your pH between 8.1-8.4
    Maintain a strict schedule for routine water changes.

    When he was experimenting with possible treatments for GBS, Paul Groves (Head Aquarist at Underwater World in Perth, Australia, at the time) was able to produce all the different forms of GBS in a control group of Hippocampus breviceps simply by exposing them to a dirty, bacteria-laden substrate. His seahorse setup was far better than any hobbyist could hope for — an open system with 100% flow through from the ocean and a live sand base, yet all the seahorses in the tank eventually developed GBS (Groves, pers. com.). Males with chronic pouch gas were the first to appear, followed by specimens with internal GBS, and finally subcutaneous gas bubbles appeared on the tails and snouts of the others Groves, pers. com.). The weakness of Paul’s setup was poor circulation, and for experimental purposes, he deliberately allowed fecal matter and uneaten nauplii to build up on the bed of live sand. (Groves found that antibiotics were totally ineffective in treating GBS, but he eventually cured 10 of the 12 affected seahorses using decompression at a depth of 4 meters.)

    It is not clear whether stress from the dirty conditions or exposure to such a high density of bacteria triggered the problem in this case, but the lesson is loud and clear all the same — it pays to keep those aquariums clean (Giwojna, Jan. 2004)! If we keep our seahorses setups clean, we will keep our problems with GBS to a minimum (Giwojna, Jan. 2004).

    Maintaining the proper pH is especially important for seahorses, since low pH in the aquarium can result in general metabolic acidosis, leading to gas embolisms via the same mechanisms as stress-induced GBS (Giwojna, Jan. 2004).

    (5) Water changing precautions (Giwojna, Jan. 2004):

    It’s an excellent idea to use Reverse Osmosis (RO) or Deionized (DI) or RO/DI water for your changes because it’s much more pure than tap water. However, water purified by such methods is very soft and must be buffered before it’s used so it won’t drop the pH in your aquarium when it’s added (Giwojna, Jan. 2004).

    When mixing saltwater for your marine aquarium, it’s important to fill your container with all the water you will need BEFORE adding the salt mix. In other words, if you are mixing up 5 gallons of new saltwater, fill the mixing container with 5 gallons of water and then add the salt. If you do it the other way around — dump the salt mix in the container and then start filling it with water, the water can become saturated with salt to the point that the calcium precipitates out. This calcium precipitation will turn the water milky and can also lower the pH to dangerous levels (Giwojna, Jan. 2004).

    Water changes can also be a problem because of the supersaturation of gases in tap water. Tap water distribution systems are maintained under pressure at all times, both to insure adequate flow and to prevent polluted water from outside the pipes from entering in at leaks. Any additional gas introduced into these pipes (from a leaky manifold, for example) will be dissolved at these higher partial pressures, and will often be supersaturated when it emerges from the tap (Giwojna, Jan. 2004). Also, gases are more soluble in cold water than warm, so when gas-saturated cold water emerges from the tap and warms up in an aquarium, or is warmed up and preadjusted to aquarium temps prior to making a water change, the water can become supersaturated (Giwojna, Jan. 2004). This must be avoided at all costs because gas supersaturation is one of the factors that can contribute to Gas Bubble Disease in seahorses and other fish.

    To prevent this, tap water should be allowed to sit for several days beforehand or gentle aeration can be used to remove gas supersaturation before a water change (just make sure your airstones are not be submerged greater than 18 inches while you’re aerating your freshly mixed water; (Giwojna, Jan. 2004)). Some brands of artificial sea salt also produce low levels of ammonia immediately after mixing with water, and aging or aerating the newly mixed water as described above will dissipate this residual ammonia.

    Most of the above is mentioned for future reference — I realize there aren’t many modifications you can make after the fact, once your system is already up and running (Giwojna, Jan. 2004). But there are a few things you can try with your existing system that should help.

    First of all, whenever you find yourself dealing with an environmental disease such as GBS, a water change is an excellent place to start. At the first sign of GBS, I suggest you combine a 25%-50% water change with a thorough aquarium clean up (Giwojna, Jan. 2004).

    Secondly, consider adding an ordinary airstone to your tank, anchored just beneath the surface of the water. That will add surface agitation, extra aeration, and better gas exchange at the air/water interface (Giwojna, Jan. 2004). Unless you’re quite certain your system already has plenty of water movement, it is also advisable to add a small powerhead for extra circulation (Giwojna, Jan. 2004). Seahorses can handle more water movement than most folks realize, and you can always turn it off during feedings. Just screen off the intake for the powerhead as a precaution so it can’t accidentally suck up a curious seahorse (Giwojna, Jan. 2004).

    Finally, use shorter hitching posts and holdfasts that will confine your seahorses to the bottom half of the aquarium and reduce the water temperature. Shorter hitching posts will get the maximum benefit from whatever depth your tank can provide, and lowering the water temperature allows the water to hold more dissolved gases, which can help avoid any tendency toward supersaturation (Cozzi-Schmarr, 2003).

    Those simple measures may make a big difference. Just maintain good water quality, add a shallow airstone and perhaps an extra power head to provide better water movement and gas exchange, and keep things cool and you can reduce your risk of GBS considerably (Giwojna, Jan. 2004).

    Best of luck with your seahorses, Cherie! Here’s hoping your male’s next pregnancy goes smoothly with no recurrence of his problems with pouch gas.

    Respectfully,
    Pete Giwojna

Viewing 2 posts - 1 through 2 (of 2 total)
  • You must be logged in to reply to this topic.

America's Only Seahorse Aqua-Farm and One of Hawaii's Most Popular Attractions

Ocean Rider seahorse farm is a consistent Trip Advisor Certificate of Excellence Award Winner and "Top 10 Things To Do" Kona, Hawaii attraction. Our "Magical Seahorse Tours" are educational and fun for the whole family.

Tour tickets are available for Purchase On-Line. Space is limited and subject to availability.

small seahorse Ocean Rider, Inc. is an Organic Hawaiian-Based Seahorse Aqua-Farm & Aquarium that Follows Strict Good Farming Practices in Raising Seahorses and Other Aquatic Life.

Seahorse Hawaii Foundation

Inspiring ocean awareness by saving the endangered seahorse and sea dragons around the world from extinction through conservation, research, propagation, and education.

Help us save the seahorse and the coral reefs they live in with a tax deductible contribution to the Seahorse Hawaii Foundation. You will be helping to protect and propagate over 25 species of endangered seahorses, sea dragons and friends.

Make A Tax-Deductible Donation Today!

A Different Kind of Farm (Video) »

Ocean Rider Kona Hawaii

Ocean Rider Kona Hawaii
Seahorse Aqua-Farm & Tours

73-4388 Ilikai Place

Kailua Kona, Hawaii 96740

Map & Directions


808-329-6840

Contact Ocean Rider


*Copyright ©1999-2024
All Rights Reserved | Ocean Rider Inc.

My Online Order Details

Purchase Policy

Site Terms and Conditions